Analysis Qualifying Exam

Part I: Complex Analysis

August, 2018

1. Prove that if f is entire and the imaginary part of f is bounded on \mathbb{C}, then f must be constant.
2. Find a conformal map from the unbounded region outside the disks $\{|z+1| \leq 1\} \cup$ $\{|z-1| \leq 1\}$ to the upper half plane.
3. The function $\frac{z^{3}-1}{z^{2}+4 z-5}$ has a power series expansion in a neighborhood of the origin. What is its radius of convergence?
4. Let γ be the closed polygon $[3-i, 3+i, 1 / 2+i, 1 / 2-i, 3-i]$. Find the following integrals

$$
\int_{\gamma} z^{m} /(z-1)^{m}, \quad m \in \mathbb{N}
$$

5. Find the residue of

$$
f(z)=\frac{e^{z^{2}}}{z^{n}}
$$

at each of its pole in \mathbb{C} for each $n \in \mathbb{N}$.
6. Evaluate

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{2}}
$$

7. Suppose $f: D \rightarrow D=\{z:|z|<1\}$ analytic and $f(z)$ is not identically equal to z. Show that f can have at most one fixed point in D.
